

Collaborative Wire Harness Design in PLM Environment

Krishna Nadimetla UGS

- Mechatronics overview
- Wire Harness Design Challenges
- Collaborative Framework
- Use cases

Mechatronics Definition

▶ A mechatronics system is the synergistic integration of mechanical, electrical, electronics and embedded software technologies into electro-mechanical products.

Some Facts...

- Rapidly Increasing Functionality
 - Increased package and PCB density
 - ▶ 80-90% of new functions are electronics based¹
 - Rapidly changing technology
 - Increased on-board diagnostics
 - Software-based functionality
- Growing Networks
 - Hundreds of kilometers of wires in an aircraft
 - ► Complex interconnections
- Tighter Physical Constraints
 - Smaller enclosures
 - Increased number of components
 - ► Electromagnetic interference
 - Non-planar, flexible circuitry

Mechatronics Design Environment

- ► Synchronization of mechanical and electrical design representations
- ► Lack of system design
- ► Understanding and fullfilling requirements
- ► Disciplines use different data management
- ► Disciplines use different design processes
- ► Lack of or no smooth flow of data across all phases

Significant Value

- ▶ Mechatronics overview
- Wire Harness Design Challenges
- Framework
- Use cases

Wire Harness design focus...

Challenges associated with Wire Harness Design Process...

- Developers designed and located each sub-assembly in the system with little consideration of the physical and electrical constraints of cabling
- Determine precise routing and length of cable through trial and error
- Synchronization of mechanical and electrical design data
- Lack of Interoperability between tools
- Disciplines use different data management
- ► Disciplines use different design processes
- Lack of or no smooth flow of data across all phases
- Lack of Change control
- ► Lack of support for Option and Variant management of Max complexity wire harness

Evolution of Wire Harness Design

Some of the challenges are addressed by integrating ECAD system with Mechanical 3-D modeling system

- Precise Routing
- Exact length of Cable & Bundle data
- Interference checks
- Design Rule Validation
- Lack of integrated workflow resulting
 - Duplication of design data
 - Modification of data is error prone and time consuming.
- Lack of change control
- Point to point integration between multiple design tools

Vision of Harness Design

Teamcenter PLM

▶ Core Capabilities

- **▶** Security
- **▶ Change Management**
- **▶** Configuration Management
- **▶** Data Distribution
- **►**Workflow
- **▶** Collaboration

▶ Wire Harness Design

- ►AP212/KBL data model
- **▶PLM XML** support
- ▶ITK, AIWS API support
- ▶Integration framework

- ▶ Mechatronics overview
- Wire Harness challenges
- Collaborative Framework
- Use cases

UGS Mechatronics Framework

Wire Harness Data Model

- ► Data model based on Industry standard STEP model AP212
- Provide objects to support entire design process –
 - ► Functions, Connections, Signals, Ports, Routing, Topology etc for Logical Design
 - ▶ Items, Devices for Physical Design
- Allocations to associate components across different phases of development

► Optionally, support KBL specific data elements - general_wire, general_terminal, cavity_plug, cavity_seal

Wire Harness Data Model contd...

► Goal is to integrate the design environment so data can be shared seamlessly between different application environments

Integration Architecture

- Mechatronics overview
- ▶ Wire Harness challenges
- ▶ Framework
- ▶ Use cases

Use Case – Wiring Design and Release

- Better Integration between 2-D schematic and 3-D Mechanical systems
- Integration provides the ability to design in context
- Unique master data in Teamcenter shared across all stages of design
- Ability to manage workflow and change control

www.ugs.com